RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 492, Pages 62–64 (Mi danma73)

MATHEMATICS

Maps with prescribed Boardman singularities

A. D. Ryabichev

National Research University "Higher School of Economics", Moscow, Russian Federation

Abstract: In this paper we extend Y. Eliashberg's theorem on the maps with fold type singularities to arbitrary Thom-Boardman singularities. Namely, we state a necessary and sufficient condition for a continuous map of smooth manifolds of the same dimension to be homotopic to a generic map with a prescribed Thom-Boardman singularity $\Sigma^I$ at each point. In dimensions 2 and 3 we rephrase this condition in terms of the homology classes of the given singular loci and the characteristic classes of the manifolds.

Keywords: Thom-Boardman singularities, folds, cusps, $h$-principle.

UDC: 515.16

Presented: V. A. Vassiliev
Received: 12.03.2020
Revised: 12.03.2020
Accepted: 23.03.2020

DOI: 10.31857/S2686954320030170


 English version:
Doklady Mathematics, 2020, 101:3, 224–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025