RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 492, Pages 75–78 (Mi danma76)

This article is cited in 1 paper

MATHEMATICS

Bounded gaps between primes of special form

A. V. Shubin

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russian Federation

Abstract: Let $0<\alpha$, $\sigma<1$ be arbitrary fixed constants, let $q_1<q_2<\dots<q_n<q_{n+1}<\dots$ be the set of primes satisfying the condition $\{q_n^\alpha\}<\sigma$ and indexed in ascending order, and let $m\ge1$ be any fixed integer. Using an analogue of the Bombieri–Vinogradov theorem for the above set of primes, upper bounds are obtained for the constants $c(m)$ such that the inequality $q_{n+m}-q_n\le c(m)$ holds for infinitely many $n$.

Keywords: consecutive primes, small gaps, fractional parts, bounded gaps, sieve method, Bombieri–Vinogradov theorem.

UDC: 511.3

Presented: S. V. Konyagin
Received: 14.03.2020
Revised: 14.03.2020
Accepted: 21.03.2020

DOI: 10.31857/S2686954320030194


 English version:
Doklady Mathematics, 2020, 101:3, 235–238

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025