RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 493, Pages 5–8 (Mi danma85)

This article is cited in 1 paper

MATHEMATICS

Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case

J. Batta, E. Jörna, A. L. Skubachevskiibc

a Mathematisches Institut, Ludwig-Maximilians-Universität München, Germany
b Mathematical Institute of the RUDN University, Moscow, Russia
c Moscow Center for Fundamental and Applied Mathematics, Moscow, Russian Federation

Abstract: We consider the three-dimensional stationary Vlasov–Poisson system of equations with respect to the distribution function of the gravitating matter $f=f_q(r,u)$, the local density $\rho=\rho(r)$, and the Newtonian potential $U=U(r)$, where $r:=|x|$, $u:=|v|$ ($(x,v)\in\mathbb R^3\times\mathbb R^3$ are the space–velocity coordinates), and $f$ is a function $q$ of the local energy $E:=U(r)+\dfrac{u^2}2$. For a given function $p=p(r)$, we obtain sufficient conditions for $p$ to be “extendable”. This means that there exists a stationary spherically symmetric solution $(f_q,\rho,U)$ of the Vlasov–Poisson system depending on the local energy $E$ such that $\rho=p$.

Keywords: Vlasov–Poisson system, stationary spherically symmetric solution, stellar dynamics.

UDC: 517.9:52

Presented: V. V. Kozlov
Received: 04.06.2020
Revised: 04.06.2020
Accepted: 15.06.2020

DOI: 10.31857/S2686954320040232


 English version:
Doklady Mathematics, 2020, 102:1, 265–268

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025