RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 493, Pages 18–20 (Mi danma88)

MATHEMATICS

On the dimension of the congruence centralizer

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russian Federation

Abstract: Let $A$ be a nonsingular complex $(n\times n)$ matrix. The congruence centralizer of $A$ is the collection $\mathscr{L}$ of matrices $X$ satisfying the relation $X^*AX=A$. The dimension of $\mathscr{L}$ as a real variety in the matrix space $M_n(\mathbf{C})$ is shown to be equal to the difference of the real dimensions of the following two sets: the conventional centralizer of the matrix $A^{-*}A$, called the cosquare of $A$, and the matrix set described by the relation $X=A^{-1}X^*A$. This dimensional formula is the complex analog of the classical result of A. Voss, which refers to another type of involution in $M_n(\mathbf{C})$.

Keywords: $^*$-congruence, congruence centralizer, cosquare, canonical form with respect to congruences.

UDC: 512.643

Presented: E. E. Tyrtyshnikov
Received: 02.04.2020
Revised: 02.04.2020
Accepted: 20.04.2020

DOI: 10.31857/S2686954320040074


 English version:
Doklady Mathematics, 2020, 102:1, 276–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025