RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 493, Pages 21–25 (Mi danma89)

This article is cited in 2 papers

MATHEMATICS

Geometry of factorization identities for discriminants

E. N. Mikhalkin, V. A. Stepanenko, A. K. Tsikh

Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract: Let $\Delta_n$ be the discriminant of a general polynomial of degree $n$ and $\mathcal{N}$ be the Newton polytope of $\Delta_n$. We give a geometric proof of the fact that the truncations of $\Delta_n$ to faces of $\mathcal{N}$ are equal to products of discriminants of lesser $n$ degrees. The proof is based on the blow-up property of the logarithmic Gauss map for the zero set of $\Delta_n$.

Keywords: discriminant, Newton polytope, logarithmic Gauss map, Horn–Kapranov parametrization.

UDC: 512.761, 517.55

Presented: V. A. Vassiliev
Received: 22.05.2020
Revised: 22.05.2020
Accepted: 04.06.2020

DOI: 10.31857/S268695432004013X


 English version:
Doklady Mathematics, 2020, 102:1, 279–282

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024