RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 495, Pages 48–54 (Mi danma9)

This article is cited in 7 papers

MATHEMATICS

On the finiteness of the number of expansions into a continued fraction of $\sqrt f$ for cubic polynomials over algebraic number fields

V. P. Platonovab, M. M. Petrunina

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We obtain a complete description of cubic polynomials f over algebraic number fields $\mathbb K$ of degree 3 over $\mathbb Q$ for which the continued fraction expansion of $\sqrt f$ in the field of formal power series $\mathbb K((x))$ is periodic. We also prove a finiteness theorem for cubic polynomials $f\in K[x]$ with a periodic expansion of $\sqrt f$ for extensions of $\mathbb Q$ of degree at most 6. Additionally, we give a complete description of such polynomials $f$ over an arbitrary field corresponding to elliptic fields with a torsion point of order $N\ge30$.

Keywords: elliptic field, $S$-units, continued fractions, periodicity, modular curves, torsion point.

UDC: 511.6

Received: 15.09.2020
Revised: 15.09.2020
Accepted: 21.09.2020

DOI: 10.31857/S2686954320060119


 English version:
Doklady Mathematics, 2020, 102:3, 487–492

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025