RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2016 Issue 6, Pages 1–24 (Mi demr26)

This article is cited in 6 papers

Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials

I. I. Sharapudinovab

a Daghestan Scientific Centre of RAS
b Daghestan State Pedagogical University

Abstract: We consider polynomials $p_{r,n}^{\alpha,\beta}(x)$ $(n=0,1,\ldots)$, generated by classical Jacobi polynomials $p_{n}^{\alpha,\beta}(x)$ and forming orthonormal system with respect to Sobolev-type inner product
\begin{equation*} <f,g>=\sum_{\nu=0}^{r-1}f^{(\nu)}(-1)g^{(\nu)}(-1)+\int_{-1}^{1}f^{(r)}(t)g^{(r)}(t)\rho(t) dt, \end{equation*}
where $\rho(x)=(1-x)^\alpha(1+x)^\beta$ – Jacobi weight function. The explicit \linebreak representations for polynomials $p_{r,n}^{\alpha,\beta}(x)$ are obtained and using these ones the asymptotic properties of polynomials $p_{r,n}^{\alpha,\beta}(x)$ are investigated.

Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Jacobi polynomials, Chebyshev polynomials of the first kind, Legendre polynomials.

UDC: 517.538

Received: 27.06.2016
Revised: 09.08.2016
Accepted: 10.08.2016

DOI: 10.31029/demr.6.1



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024