RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2017 Issue 7, Pages 16–28 (Mi demr33)

This article is cited in 6 papers

Splines for three-point rational interpolants with autonomous poles

A.-R. K. Ramazanovab, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: For arbitrary grids of nodes $\Delta: a=x_0<x_1<\dots<x_N=b$ $(N\geqslant 2)$ smooth splines for three–point rational interpolants are constructed, the poles of interpolants depend on nodes and the free parameter $\lambda$. Sequences of such splines and their derivatives for all functions $f(x)$ respectively of the classes of $C_{[a,b]}^{(i)}$ $(i=0,1,2)$ under the condition $\|\Delta\| \to 0$ uniformly in $[a,b]$ converge respectively to $f^{(i)}(x)$ $(i=0,1,2)$ (depending on the parameter $\lambda$). Bonds for the convergence rate are found in terms of the distance between the nodes.

Keywords: splines, interpolation splines, rational splines.

UDC: 517.5

Received: 11.03.2017
Revised: 24.03.2017
Accepted: 27.03.2017

DOI: 10.31029/demr.7.2



© Steklov Math. Inst. of RAS, 2025