RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2017 Issue 7, Pages 61–65 (Mi demr38)

This article is cited in 3 papers

Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums

R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: The present paper is devoted to the study of approximation properties of partial sums of the Fourier series in the modified Meixner polynomials $M_{n,N}^\alpha(x)=M_n^\alpha(Nx)$ $(n=0, 1, \dots)$ which for $\alpha>-1$ constitute an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$, where $\delta=\frac{1}{N}$, $N>0$ with weight $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$. The main attention is paid to obtaining an upper estimate for the Lebesgue function of these partial sums.

Keywords: Meixner polynomials, Fourier series, Lebesgue function.

UDC: 517.521

Received: 27.03.2017
Revised: 06.04.2017
Accepted: 10.04.2017

DOI: 10.31029/demr.7.7



© Steklov Math. Inst. of RAS, 2024