RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2014 Issue 1, Pages 1–55 (Mi demr4)

This article is cited in 1 paper

Polynomials, orthogonal on grids from unit circle and number axis

I. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences

Abstract: In current paper we investigate the asymptotic properties of polynomials, orthogonal on arbitrary (not necessarily uniform) grids from an unit circle or segment $[-1,1]$. When the grid of nodes $\Omega_N^T=\left\{e^{i\theta_0},e^{i\theta_1},\ldots,e^{i\theta_{N-1}}\right\}$ belongs to the unit circle $|w|=1$ we consider polynomials $\varphi_{0,N}(w),\varphi_{1,N}(w),\ldots,$ $\varphi_{N-1,N}(w)$, orthogonal in the following sense:
$$ \frac1{2\pi}\int\limits_{-\pi}^\pi \varphi_{n,N}(e^{i\theta})\overline{\varphi_{m,N}(e^{i\theta})}\,d\sigma_N(\theta)= $$

$$ \frac1{2\pi}\sum\limits^{N-1}_{j=0} \varphi_{n,N}(e^{i\theta_j})\overline{\varphi_{m,N}(e^{i\theta_j})} \Delta\sigma_N(\theta_j)=\delta_{nm}, $$
where $\Delta\sigma_N(\theta_j)=\sigma_N(\theta_{j+1})-\sigma_N(\theta_j), j=0,\ldots,N-1$. In case, when $\Delta\sigma_N(\theta_j)=h(\theta_j)\Delta\theta_j$, the asymptotic formula for $\varphi_{n,N}(w)$ is established, which in turn, used for investigation of asymptotic properties of polynomials which are orthogonal on grids from $[-1,1]$.

Keywords: unit circle, number axis, polynomials orthogonal on grids, asymptotic formulas.

UDC: 517.538

Received: 25.10.2013
Revised: 15.04.2014
Accepted: 17.04.2014

DOI: 10.31029/demr.1.1



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024