RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2017 Issue 8, Pages 21–26 (Mi demr45)

Approximation of piecewise linear functions by discrete Fourier sums

G. G. Akniev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: Let $N$ be a natural number greater than $1$. We select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In the present article the problem of function approximation by the polynomials $L_{n,N}(f,x)$ is considered. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign}\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform with respect to $1 \leq n \leq N/2$. Moreover, we found a local estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform with respect to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimate $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform with respect to $1 \leq n \leq N/2$. The proofs of these estimations based on comparing of approximating properties of discrete and continuous finite Fourier series.

Keywords: function approximation, trigonometric polynomials, Fourier series.

UDC: 517.521.2

Received: 19.10.2017
Revised: 25.10.2017
Accepted: 27.10.2017

DOI: 10.31029/demr.8.3



© Steklov Math. Inst. of RAS, 2024