RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2018 Issue 9, Pages 1–6 (Mi demr51)

This article is cited in 1 paper

Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines

G. G. Akniev, R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: In this paper we developed an algorithm for numerical computation of polynomials by the functions $\xi_{1,0}(t)=1,\ \xi_{1,1}(t)=t,\ \xi_{1,n+1}(t)=\frac{\sqrt{2}}{\pi n}\sin(\pi nt),\ (n=1,2,\ldots)$ on the grid $\{t_j=\frac{j}{N}\}_{j=0}^{N-1}$. These functions are orthogonal on Sobolev with respect to the inner product $\langle f, g\rangle=f(0)g(0)+\int_0^1f'(t)g'(t)dt$ and generated by functions $\xi_0(x)=1,\ \{\xi_n(t)=\sqrt{2}\cos(\pi nt)\}_{n=1}^\infty$. The algorithm is based on the fast Fourier transform.

Keywords: fast Fourier transform, discrete sine transform, inner product of Sobolev type, Sobolev orthogonal function.

UDC: 519.688

Received: 27.03.2018
Revised: 30.05.2018
Accepted: 31.05.2018

DOI: 10.31029/demr.9.1



© Steklov Math. Inst. of RAS, 2024