Abstract:
For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes
$\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that
$R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)+R_{i-1}(x, f)B_{i,k}(x)$ for
$x\in[x_{i-1}, x_i]$$(i=1,2,\dots)$ and $k=1,2,\dots$
Here
$A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$,
$R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$$(j=1,2,\dots)$,
$R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$.
Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$,
are found.
Keywords:interpolation spline, rational spline, approximation on semi-axis.