RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2019 Issue 11, Pages 32–37 (Mi demr70)

On the approximation of $\exp(-x)$ on the half-axis by spline functions in three-point rational interpolants

A.-R. K. Ramazanovab, V. G. Magomedovab

a Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala
b Daghestan State University

Abstract: For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$.
Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.

Keywords: interpolation spline, rational spline, approximation on semi-axis.

UDC: 517.5

Received: 14.02.2019
Revised: 20.05.2019
Accepted: 21.05.2019

DOI: 10.31029/demr.11.4



© Steklov Math. Inst. of RAS, 2024