RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2019 Issue 11, Pages 28–48 (Mi demr71)

A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation

E. I. Abduragimov

Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala

Abstract: A priori estimates of the positive solution of the two-point boundary value problem are obtained $y^{\prime\prime}=-f(x,y)$, $0<x<1$, $y(0)=y(1)=0$ assuming that $f(x,y)$ is continuous at $x \in [0,1]$, $y \in R$ and satisfies the condition $a_0 x^{\gamma}y^p \leq f(x,y) \leq a_1 y^p$, where $a_0>0$, $a_1>0$, $p>1$, $\gamma \geq 0$ – constants.

Keywords: positive solution, a priori estimates, differential equation, two-point boundary value problem.

UDC: 517.946

Received: 18.02.2019
Revised: 28.05.2019
Accepted: 29.05.2019

DOI: 10.31029/demr.11.5



© Steklov Math. Inst. of RAS, 2025