Abstract:
The main result is the proof of the theorems, the results of which one can
characterize as a weak form of the formula for the inversion of the bi-dimmensional Fourier transform. Sufficient conditions on a function are obtained for a weak (of degree $r$) convergence of bi-dimmensional Fourier transform for a function $f(x;y)$. These conditions have an integral form and describe the behavior of the function near the border of a rectangle. A similar theorem is proved, in which the Fourier transform of a function $f$ is replaced by the Fourier transform of another function $g$, the norm of the central difference of which does not exceed the norm of the central difference of $f$.
The principal objective is to study the behavior of the Fourier transform of
$g$ and $f$.