RUS  ENG
Full version
JOURNALS // Daghestan Electronic Mathematical Reports // Archive

Daghestan Electronic Mathematical Reports, 2021 Issue 15, Pages 1–21 (Mi demr89)

About the convergence of the Fourier transform

M. A. Boudrefab

a Université de Bouira, Faculté des sciences et des sciences appliquées, Département des mathématiques, 10000, Algérie
b Laboratoire des Mathématiques appliquées, Faculté des Sciences Exactes, Université de Béjaia, 06000, Algérie

Abstract: The main result is the proof of the theorems, the results of which one can characterize as a weak form of the formula for the inversion of the bi-dimmensional Fourier transform. Sufficient conditions on a function are obtained for a weak (of degree $r$) convergence of bi-dimmensional Fourier transform for a function $f(x;y)$. These conditions have an integral form and describe the behavior of the function near the border of a rectangle. A similar theorem is proved, in which the Fourier transform of a function $f$ is replaced by the Fourier transform of another function $g$, the norm of the central difference of which does not exceed the norm of the central difference of $f$.
The principal objective is to study the behavior of the Fourier transform of $g$ and $f$.

Keywords: two-dimensional Fourier transform, Riemann-Lebesgue theorem.

UDC: 517.51

Received: 28.09.2020
Revised: 12.03.2021
Accepted: 15.03.2021

Language: English

DOI: 10.31029/demr.15.1



© Steklov Math. Inst. of RAS, 2024