RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2008 Volume 20, Issue 4, Pages 8–28 (Mi dm1023)

This article is cited in 1 paper

On design of circuits of logarithmic depth for inversion in finite fields

S. B. Gashkov, I. S. Sergeev


Abstract: We suggest a method of realisation of inversion over the standard bases of finite fields $GF(p^n)$ by means of circuits over $GF(p)$ of complexity $O(\varepsilon^{-1}n^{w+\varepsilon})$ and depth $O(\varepsilon^{-1}\log n)$, where $\varepsilon>0$, and $w<1.667$ is the exponent of multiplication of $\sqrt n\times\sqrt n$ and $\sqrt n\times n$ matrices. Inversion over Gaussian normal bases is realised by a circuit of complexity $O(\varepsilon^{-b}n^{1+c\varepsilon|\log\varepsilon|})$ and depth $O(\varepsilon^{-1}\log n)$, where $b,c$ are constants.

UDC: 519.7

Received: 29.01.2007

DOI: 10.4213/dm1023


 English version:
Discrete Mathematics and Applications, 2008, 18:5, 483–504

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025