RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2009 Volume 21, Issue 4, Pages 30–38 (Mi dm1069)

Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a convergent series

O. V. Zubkov


Abstract: We obtain a representation of the number $K_n$ of repetition-free Boolean functions of $n$ variables over the elementary basis $\{\&,\vee,\bar{}\,\}$ in the form of a convergent exponential power series. This representation is the simplest representation among a number of similar formulas containing different combinatorial numbers. The obtained result gives a possibility to find the asymptotics of $K_n$.

UDC: 519.7

Received: 20.02.2009

DOI: 10.4213/dm1069


 English version:
Discrete Mathematics and Applications, 2009, 19:5, 505–513

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025