RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2010 Volume 22, Issue 2, Pages 96–119 (Mi dm1098)

This article is cited in 7 papers

On some classes of nonlinear shift registers with the same cyclic structure

M. I. Rozhkov


Abstract: The paper is devoted to investigating the cyclic structure of an autonomous automaton $R(t)=R(G^n,\delta_f)$ named a shift register with feedback function $f$, $f\colon G^n\to G$, and transition function
$$ \delta_f(y_1,y_2,\dots,y_n)=(y_2,y_3,\dots,y_n,f(y_1,y_2,\dots,y_n)). $$
An important problem in this field of investigation consists of constructing a nonlinear automaton $R(f)$ of a given cyclic structure, in particular, possessing a cycle of length $2^n$ or $2^n-1$.

UDC: 519.7

Received: 21.01.2008

DOI: 10.4213/dm1098


 English version:
Discrete Mathematics and Applications, 2010, 20:2, 127–155

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024