RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2010 Volume 22, Issue 2, Pages 148–159 (Mi dm1101)

This article is cited in 2 papers

On the potential divisibility of matrices over distributive lattices

I. B. Kozhukhov, V. A. Yaroshevich


Abstract: We consider matrices of arbitrary sizes (including infinite matrices) over a distributive lattice $L$ and prove that if $L=2^X$ is a lattice of all subsets of a set $X$, then the potential divisibility of matrices (from the left or from the right) of one of the matrices by the other matrix is equivalent to the usual divisibility. In particular, in the semigroup of square matrices over the lattice $2^X$ the Green relation $\mathscr L$ coincides with the generalised Green relation $\mathscr L^*$.

UDC: 512.533

Received: 01.06.2009

DOI: 10.4213/dm1101


 English version:
Discrete Mathematics and Applications, 2010, 20:3, 291–305

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024