RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2010 Volume 22, Issue 4, Pages 104–120 (Mi dm1122)

This article is cited in 4 papers

An algorithm to restore a linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a linear complication of its highest coordinate sequence

D. N. Bylkov, A. A. Nechaev


Abstract: Let $u$ be a linear recurring sequence of maximal period over the ring $\mathbf Z_{p^n}$ and be a pseudo-random sequence over the field $\mathbf Z_p$ obtained by multiplying the highest coordinate sequence of $u$ by some polynomial. In this paper we analyse possibilities and ways to restore $u$ from a given $v$. A short survey of earlier results is given.

UDC: 519.7

Received: 01.09.2010
Revised: 04.11.2010

DOI: 10.4213/dm1122


 English version:
Discrete Mathematics and Applications, 2010, 20:5-6, 591–609

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025