RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2011 Volume 23, Issue 1, Pages 94–101 (Mi dm1133)

This article is cited in 3 papers

The critical $\omega$-foliated $\tau$-closed formations of finite groups

M. A. Korpacheva, M. M. Sorokina


Abstract: Let $\mathfrak H$ be a class of finite groups, $\tau$ be a subgroup functor; an $\omega$-foliated $\tau$-closed formation of finite groups $\mathfrak F$ with direction $\delta$ is called the minimal $\omega$-foliated $\tau$-closed non-$\mathfrak H$-formation with direction $\delta$, or, in other words, $\mathfrak H_{\omega\tau\delta}$-critical formation if $\mathfrak F\not\subseteq\mathfrak H$, but all proper $\omega$-foliated $\tau$-closed subformations with direction $\delta$ in $\mathfrak F$ are contained in the class $\mathfrak H$. In this paper we investigate the structure of the minimal $\omega$-foliated $\tau$-closed non-$\mathfrak H$-formations with $bp$-direction $\delta$ satisfying the condition $\delta\le\delta_3$ in the case where $\tau$ is a regular $\delta$-radical subgroup functor.

UDC: 512.542

Received: 12.11.2008
Revised: 07.06.2009

DOI: 10.4213/dm1133


 English version:
Discrete Mathematics and Applications, 2011, 21:1, 69–77

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025