RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2011 Volume 23, Issue 2, Pages 3–31 (Mi dm1137)

This article is cited in 8 papers

Reconstruction of a linear recurrence of maximal period over a Galois ring from its highest coordinate sequence

A. S. Kuzmin, A. A. Nechaev


Abstract: Let $R=GR(q^n,q^n)$ be a Galois ring of cardinality $q^n$ and characteristic $p^n$, $q=p^r$, $p$ be a prime. We call a subset $K\subset R$ a coordinate set if $0\in K$ and for any $a\in R$ there exists a unique $\varkappa(a)\in K$ such that $a\equiv\varkappa(a)\pmod{pR}$. Let $u$ be a linear recurring sequence of maximal period (MP LRS) over a ring $R$. Then any its term $u(i)$ admits a unique representation in the form
$$ u(i)=w_0(i)+pw_1(i)+\dots+p^{n-1}w_{n-1}(i),\qquad w_t(i)\in K,\quad t\in\{0,\dots,n-1\}. $$
We pose the following conjecture: the sequence $u$ can be uniquely reconstructed from the sequence $w_{n-1}$ for any choice of the coordinate set $K$. It is proved that such a reconstruction is possible under some conditions on $K$. In particular, it is possible for any $K$ if $R=\mathbf Z_{p^n}$ and for any Galois ring $R$ if $K$ is a $p$-adic (Teichmüller) coordinate set.

UDC: 519.7

Received: 16.04.2010

DOI: 10.4213/dm1137


 English version:
Discrete Mathematics and Applications, 2011, 21:2, 145–178

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025