Abstract:
We consider an asynchronous double stochastic flow with initiation of superfluous events (a generalised asynchronous flow), which is a mathematical model of information flows in computer networks, communication systems, etc. We study the stationary mode of the flow. We find the probability density $p(\tau)$ of the length of the interval between events in the flow and the joint probability density $p(\tau_1,\tau_2)$ of the lengths of two neighbouring intervals. We show that the generalised asynchronous flow is a correlated flow in the general case. We find conditions for the flow to become recursive or to degenerate into an elementary one.