RUS
ENG
Full version
JOURNALS
// Diskretnaya Matematika
// Archive
Diskr. Mat.,
2015
Volume 27,
Issue 1,
Pages
108–110
(Mi dm1318)
This article is cited in
2
papers
A generalization of Ore's theorem on irreducible polynomials over a finite field
A. A. Nechaev
a
,
V. O. Popov
b
a
Academy of Criptography of Russia
b
CRYPTO-PRO
Abstract:
For an arbitrary prime power
$q$
, a criterion for irreducibility of a polynomial of the form
$$ F(x) = x^{q^{m}-1}+a_{m-1}x^{q^{m-1}-1}+\ldots+a_1x^{q-1}+a_0, \ a_0\neq 0, $$
over the field
$K = GF(q^t)$
is established.
Keywords:
irreducible polynomials, irreducibility criterion.
UDC:
512.622
Received:
15.10.2014
DOI:
10.4213/dm1318
Fulltext:
PDF file (369 kB)
References
Cited by
English version:
Discrete Mathematics and Applications, 2015,
25
:4,
241–243
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025