RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2015 Volume 27, Issue 1, Pages 108–110 (Mi dm1318)

This article is cited in 2 papers

A generalization of Ore's theorem on irreducible polynomials over a finite field

A. A. Nechaeva, V. O. Popovb

a Academy of Criptography of Russia
b CRYPTO-PRO

Abstract: For an arbitrary prime power $q$, a criterion for irreducibility of a polynomial of the form
$$ F(x) = x^{q^{m}-1}+a_{m-1}x^{q^{m-1}-1}+\ldots+a_1x^{q-1}+a_0, \ a_0\neq 0, $$
over the field $K = GF(q^t)$ is established.

Keywords: irreducible polynomials, irreducibility criterion.

UDC: 512.622

Received: 15.10.2014

DOI: 10.4213/dm1318


 English version:
Discrete Mathematics and Applications, 2015, 25:4, 241–243

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025