RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2016 Volume 28, Issue 2, Pages 81–91 (Mi dm1371)

This article is cited in 5 papers

On the number of functions of $k$-valued logic which are polynomials modulo composite $k$

S. N. Selezneva

Lomonosov Moscow State University

Abstract: A function of $k$-valued logic is called polynomial if it may be represented by a polynomial modulo $k$. For any composite number $k$ we propose a uniquely defined canonical form of polynomials for polynomial functions of $k$-valued logic depending on an arbitrary number of variables. This canonical form is used to find, for any composite $k$, a formula for the number of $n$-place polynomial functions of $k$-valued logic. As a corollary, for any composite $k$ we find the asymptotic behaviour of the logarithm of the number of $n$-place polynomial functions of $k$-valued logic.

Keywords: function of $k$-valued logic, polynomial, polynomial function, numeric functions, asymptotic behaviour.

UDC: 519.716.325

Received: 01.02.2016

DOI: 10.4213/dm1371


 English version:
Discrete Mathematics and Applications, 2017, 27:1, 7–14

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025