RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2016 Volume 28, Issue 3, Pages 14–25 (Mi dm1380)

Asymptotics of conditional probabilities of succesful allocation of random number of particles into cells

A. I. Afonina, I. R. Kayumov, A. N. Chuprunov

Kazan (Volga Region) Federal University

Abstract: The article is devoted to the memory of Valentin Fedorovich Kolchin.\qquad\qquad\qquad\qquad\qquad\linebreak Let $\zeta$, $\zeta_i$ ($i\inN$) be independent identically distributed nonnegative integer-valued random variables, $(\eta_{i1},\dots, \eta_{iN})$ be the fillings of cells in the generalized scheme of allocation of $\zeta_i$ particles into $N$ cells, $1\le i\le n$, for fixed $Z_n=(\zeta_1,\ldots,\zeta_n)$ these allocation schemes are independent. We consider the conditional probabilities $P(A_{n, N}\,|\,Z_n)$ of the event\linebreak $A_{n, N}=\{\text{each cell in each of } n \text{ allocation schemes contains no more than } r \text{ particles}\}$, where $r$ is some fixed number. The sufficient conditions for the convergence of the sequence $P(A_{n, N}\,|\,Z_n)$ to a nonrandom limit with probability 1 are given. It is shown that the random variable $\ln P(A_{n, N}\,|\,Z_n)$ is asymptotically normal. Applications of the obtained results to the noise-proof encoding are discussed.

Keywords: generalized allocation scheme, Cauchy integral, Hamming code.

UDC: 519.212.2

Received: 12.01.2015
Revised: 26.07.2016

DOI: 10.4213/dm1380


 English version:
Discrete Mathematics and Applications, 2017, 27:5, 277–286

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024