RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2016 Volume 28, Issue 4, Pages 139–149 (Mi dm1398)

This article is cited in 3 papers

On the number of maximal independent sets in complete $q$-ary trees

D. S. Taletskiia, D. S. Malyshevb

a Lobachevski State University of Nizhni Novgorod
b State University – Higher School of Economics in Nizhnii Novgorod

Abstract: The paper is concerned with the asymptotic behaviour of the number $\operatorname{mi}(T_{q,n})$ of maximal independent sets in a complete $q$-ary tree of height $n$. For some constants $\alpha_2$ and $\beta_2$ the asymptotic formula $\operatorname{mi}(T_{2,n})\thicksim \alpha_2\cdot (\beta_2)^{2^n}$ is shown to hold as $n\to\infty$. It is also proved that $\operatorname{mi}(T_{q,3k})\thicksim \alpha^{(1)}_q\cdot(\beta_q)^{q^{3k}},\operatorname{mi}(T_{q,3k+1})\thicksim \alpha^{(2)}_q\cdot(\beta_q)^{q^{3k+1}},\operatorname{mi}(T_{q,3k+2})\thicksim \alpha^{(3)}_q\cdot(\beta_q)^{q^{3k+2}}$ as $k\to \infty$ for any sufficiently large $q$, some three pairwise distinct constants $\alpha^{(1)}_q,\alpha^{(2)}_q,\alpha^{(3)}_q$ and a constant $b_q$.

Keywords: maximal independent set, complete $q$-ary tree.

UDC: 519.172.1

Received: 16.06.2016

DOI: 10.4213/dm1398


 English version:
Discrete Mathematics and Applications, 2017, 27:5, 311–318

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024