RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2017 Volume 29, Issue 2, Pages 3–17 (Mi dm1425)

This article is cited in 2 papers

Limit distributions of extremal distances to the nearest neighbor

A. M. Zubkova, O. P. Orlovb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University

Abstract: Theorems on the limit distributions of the minimal and maximal distances to the nearest neighbor in a sample of random independent points having a uniform distribution on a metric space are proved. As examples of such spaces a multidimensional torus and a binary cube are considered.

Keywords: random points in a metric space, nearest neighbors, distributions of extremal values, binary cube.

UDC: 519.214+519.212.3

Received: 21.02.2017

DOI: 10.4213/dm1425


 English version:
Discrete Mathematics and Applications, 2018, 28:3, 189–199

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025