RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2017 Volume 29, Issue 4, Pages 106–120 (Mi dm1435)

This article is cited in 1 paper

On the number of integer points in a multidimensional domain

A. S. Rybakov


Abstract: We provide a new upper estimate for the modulus of the difference $|\Lambda\cap {\cal S}|-{\rm vol }_n({\cal S})/{\rm det }\,\Lambda$, where ${\cal S}\subset \mathbb R^n$ is a set of volume ${\rm vol }_n({\cal S})$ and $\Lambda\subset \mathbb R^n$ is a complete lattice with determinant ${\rm det }\,\Lambda$. This result has an important practical application, for example, in estimating the number of integer solutions of an arbitrary system of linear and nonlinear inequalities.

Keywords: integer lattice, number of integer points, Gaussian volume heuristic.

UDC: 511.9

Received: 22.05.2017

DOI: 10.4213/dm1435


 English version:
Discrete Mathematics and Applications, 2018, 28:6, 385–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025