RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2017 Volume 29, Issue 4, Pages 59–65 (Mi dm1477)

A criterion of perfect balance for shift-composition of functions over a finite alphabet

O. A. Logachev

Lomonosov Moscow State University

Abstract: We prove a criterion of perfect balance for sliding superposition of functions over an arbitrary finite alphabet. We also give examples of applying this result to the construction of perfectly balanced functions that are not permutations with respect to the first and to the last variable.

Keywords: functions over a finite alphabet, sliding superposition, perfectly balanced function, function with zero defect, permutability of a function with respect to a variable.

UDC: 519.716.35+519.719.2

Received: 22.10.2017

DOI: 10.4213/dm1477


 English version:
Discrete Mathematics and Applications, 2019, 29:1, 1–5

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025