RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2020 Volume 32, Issue 1, Pages 81–109 (Mi dm1547)

On the complexity of monotone circuits for threshold symmetric Boolean functions

I. S. Sergeev

Research Institute "Kvant", Moscow

Abstract: The complexity of implementation of a threshold symmetric $n$-place Boolean function with threshold $k = O(1)$ via circuits over the basis $\{\vee,\, \wedge\}$ is shown not to exceed $2 \log_2 k \cdot n + o(n)$. Moreover, the complexity of a threshold-2 function is proved to be $2n+\Theta(\sqrt n)$, and the complexity of a threshold-3 function is shown to be $3n+O(\log n) $, the corresponding lower bounds are put forward.

Keywords: monotone circuits, complexity, symmetric Boolean functions, threshold functions.

UDC: 519.714.4

Received: 25.10.2018
Revised: 16.12.2019

DOI: 10.4213/dm1547


 English version:
Discrete Mathematics and Applications, 2021, 31:5, 345–366

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025