RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2020 Volume 32, Issue 4, Pages 89–102 (Mi dm1624)

This article is cited in 8 papers

Approximation of restrictions of $q$-valued logic functions to linear manifolds by affine analogues

V. G. Ryabov

NP «GST»

Abstract: For a finite $q$-element field $\mathbf{F}_q$, we established a relation between parameters characterizing the measure of affine approximation of a $q$-valued logic function and similar parameters for its restrictions to linear manifolds. For $q>2$, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates $q^{n-1}(q-1) - q^{n/2-1}$ and $q^{r-1}(q - 1) - q^{r/2-1}$, for the nonlinearity of an $n$-place $q$-valued logic function and of its restrictions to manifolds of dimension $r$. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.

Keywords: $q$-valued logic, restriction, manifold, affine function, nonlinearity.

UDC: 519.716.325+519.1:519.21

Received: 14.09.2020

DOI: 10.4213/dm1624


 English version:
Discrete Mathematics and Applications, 2021, 31:6, 409–419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024