RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2021 Volume 33, Issue 3, Pages 107–120 (Mi dm1658)

This article is cited in 3 papers

Finding periods of Zhegalkin polynomials

S. N. Selezneva

Lomonosov Moscow State University

Abstract: A period of a Boolean function $f(x_1, \ldots, x_n)$ is a binary $n$-tuple $a = (a_1, \ldots, a_n)$ that satisfies the identity $f(x_1+a_1, \ldots, x_n+a_n) = f(x_1, \ldots, x_n)$. A Boolean function is periodic if it admits a nonzero period. We propose an algorithm that takes the Zhegalkin polynomial of a Boolean function $f(x_1, \ldots, x_n)$ as the input and finds a basis of the space of all periods of $f(x_1, \ldots, x_n)$. The complexity of this algorithm is $n^{O(d)}$, where $d$ is the degree of the function $f$. As a corollary we show that a basis of the space of all periods of a Boolean function specified by the Zhegalkin polynomial of a bounded degree may be found with complexity which is polynomial in the number of variables.

Keywords: Boolean function, Zhegalkin polynomial, periodicity, linear structure, complexity.

UDC: 519.712.3

Received: 17.06.2021

DOI: 10.4213/dm1658


 English version:
Discrete Mathematics and Applications, 2022, 32:2, 129–138


© Steklov Math. Inst. of RAS, 2025