RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2022 Volume 34, Issue 1, Pages 23–35 (Mi dm1659)

On algebraicity of lattices of $\omega$-fibred formations of finite groups

S. P. Maksakov, M. M. Sorokina

I. G. Petrovsky Bryansk State University

Abstract: For a nonempty set $\omega$ of primes, V. A. Vedernikov had constructed $\omega$-fibred formations of groups via function methods. We study lattice properties of $\omega$-fibred formations of finite groups with direction $\delta$ satisfying the condition $\delta_{_{0}} \leq \delta$. The lattice $\omega\delta F_{\theta}$ of all $\omega$-fibred formations with direction $\delta$ and $\theta$-valued $\omega$-satellite is shown to be algebraic under the condition that the lattice of formations $\theta$ is algebraic. As a corollary, the lattices $\omega\delta F$, $\omega\delta F_{\tau}$, $\tau\omega\delta F$, $\omega\delta^{n} F$ of $\omega$-fibred formations of groups are shown to be algebraic.

Keywords: finite group, class of groups, formation groups, lattice, algebraic lattice, lattice of formations.

UDC: 512.542

Received: 15.08.2021

DOI: 10.4213/dm1659


 English version:
Discrete Mathematics and Applications, 2023, 33:5, 283–291


© Steklov Math. Inst. of RAS, 2025