RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2022 Volume 34, Issue 3, Pages 85–89 (Mi dm1714)

On the multiplicative complexity of polynomials

I. S. Sergeev

Research Institute "Kvant", Moscow

Abstract: We study the multiplicative (nonscalar) complexity $\mu(M_{d,n})$ for the class $M_{d,n}$ of complex polynomials in $n$ variables of degree at most $d$. It is shown that the relation $\mu(M_{d,n}) \asymp n^{\lceil d/2\rceil}$ holds for any constant $d \ge 2$. The lower bound for odd values of $d$ in this relation is new. For the case of cubic polynomials we prove more accurate bounds $n^2/18 \lesssim \mu(M_{3,n}) \lesssim n^2/4$.

Keywords: arithmetic circuits, multiplicative complexity, polynomials

UDC: 519.712.4

Received: 05.05.2022

DOI: 10.4213/dm1714


 English version:
Discrete Mathematics and Applications, 2024, 34:1, 29–32


© Steklov Math. Inst. of RAS, 2025