RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2004 Volume 16, Issue 4, Pages 32–40 (Mi dm173)

On a relationship between the eigenvectors of weighted graphs and their subgraphs

M. I. Skvortsova, I. V. Stankevich


Abstract: We consider the problem of finding connections between eigen-vectors and subgraphs of a weighted undirected graph $G$.
Let $G$ have $n$ vertices labelled $1,\ldots,n$, $\lambda$ be an eigen-value of the graph $G$ of multiplicity $t\ge 1$, and let $X^{(i)}=(x_1^{(i)},\ldots,x_n^{(i)})$, $i=1,\ldots,t$, be linearly independent eigen-vectors corresponding to this eigen-value. We obtain formulas representing the components $x_j^{(i)}$ of the eigen-vectors $X^{(i)}$ in terms of some characteristics of special subgraphs of the graph $G$, $i=1,\ldots,t$, $j=1,\ldots,n$. An illustrative example is given.

UDC: 519.17

Received: 23.01.2003

DOI: 10.4213/dm173


 English version:
Discrete Mathematics and Applications, 2004, 14:6, 569–577

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024