RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2004 Volume 16, Issue 4, Pages 41–48 (Mi dm174)

This article is cited in 2 papers

On the number of solutions of the equation $(x_1+\ldots+x_n)^m=ax_1\ldots x_n$ in a finite field

Yu. N. Baulina


Abstract: We consider the equation $(x_1+\ldots +x_n)^m=ax_1\ldots x_n$, where $a$ is a nonzero element of the finite field $\mathbf F_q$, $n\ge 2$, and $m$ is a positive integer. Explicit formulas for the number of solutions of this equation in $\mathbf F_q^n$ under the condition $d\in\{1,2,3,6\}$, where $d=\mathrm{gcd}(m-n,q-1)$, are found. Moreover, we obtain formulas for the number of solutions for arbitrary $d>2$ if there exists positive integer $l$ such that $d\mid(p^l+1)$, where $p$ is the characteristic of $\mathbf F_q$.

UDC: 512.624

Received: 22.04.2003

DOI: 10.4213/dm174


 English version:
Discrete Mathematics and Applications, 2004, 14:5, 501–508

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025