RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2023 Volume 35, Issue 4, Pages 58–68 (Mi dm1759)

This article is cited in 1 paper

The differential uniformity of piecewise-linear substitutions over the field $\mathbb{F}_{2^{n}}$

A. V. Menyachikhin

TVP Laboratory

Abstract: In this paper, we give lower and upper bounds on the differential uniformity of substitutions over the field $\mathbb{F}_{2^{n}}$ with restrictions to cosets of $H$ in $\mathbb{F}^{\times}_{2^{n}}$, $H<\mathbb{F}^{\times}_{2^{n}}$, $|H|=l$, $l\cdot r=2^{n}-1$, being the maps $x\mapsto c_{i}x$, $c_{i}\in\mathbb{F}^{\times}_{2^{n}}$, $i=0,\dots,r-1$.

Keywords: block cipher nonlinear confusion components, permutation of a finite field, $s$-box, piecewise-linear function, adapted spectral-differential method.

UDC: 519.719.2

Received: 11.01.2023

DOI: 10.4213/dm1759



© Steklov Math. Inst. of RAS, 2025