RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2002 Volume 14, Issue 1, Pages 82–98 (Mi dm233)

This article is cited in 5 papers

Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays

A. M. Shoitov


Abstract: In this paper we study random variables which characterise collections of segments in an equiprobable polynomial scheme related by the $H$-equivalence. We give an upper bound for the variation distance between the distribution of the random variable $\xi_k(H)$ equal to the number of collections of $H$-equivalent segments and the Poisson distribution. We present sufficient conditions for the convergence of the distribution functions of the number of $H$-equivalent segments in the triangular array scheme of equiprobable polynomial trials to the normal law, the Poisson law, and the compound Poisson law.

UDC: 519.2

Received: 02.07.2001

DOI: 10.4213/dm233


 English version:
Discrete Mathematics and Applications, 2002, 12:2, 165–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024