RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2002 Volume 14, Issue 3, Pages 42–46 (Mi dm252)

This article is cited in 9 papers

Boolean lattices of multiply $\Omega$-foliated formations

Yu. A. Skachkova


Abstract: In the context of a new functional approach to the study of classes of groups, V. A. Vedernikov and M. M. Sorokina introduced $\Omega$-foliated formations, which gave a possibility to systematise a wide class of formations of finite groups. In this paper, we study $n$-multiply $\Omega$-foliated formations with $r$-direction $\varphi$ such that $\varphi_0\leq\varphi$, $\varphi (A)\subseteq\mathfrak G_{A'}\mathfrak G_{A}$ for all $A\in\mathfrak I$ whose lattice of all $n$-multiply $\Omega$-foliated subformations with direction $\varphi$ is Boolean.

UDC: 512.542

Received: 04.04.2002

DOI: 10.4213/dm252


 English version:
Discrete Mathematics and Applications, 2002, 12:5, 477–482

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024