RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2002 Volume 14, Issue 3, Pages 143–148 (Mi dm261)

This article is cited in 4 papers

A double exponential law for maximal branching processes

A. V. Lebedev


Abstract: We consider maximal branching processes defined by the recurrence relation
$$ Z_{n+1}=\bigvee_{m=1}^{Z_n}\xi_{m,n}, $$
where $\vee$ stands for the operation of taking maximum, $\xi_{m,n}$, $m\ge 1$, $n\ge 0$, are independent with distribution function $F$ on $\mathbf Z_+$.
We prove limit theorems for stationary distributions of the processes $\{Z^{(N)}_n\}$ with the distribution functions $F^{(N)}(x)=F^N(x)$ as $N\to\infty$ in the case where $F$ belongs to the domain of attraction of the double exponential law.
This research was supported by the Russian Foundation for Basic Research, grant 00–01–00131.

UDC: 519.218

Received: 13.09.2001
Revised: 20.12.2001

DOI: 10.4213/dm261


 English version:
Discrete Mathematics and Applications, 2002, 12:4, 415–420

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024