RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2001 Volume 13, Issue 1, Pages 119–131 (Mi dm277)

This article is cited in 1 paper

Compositional formations of $c$-length 3

V. A. Vedernikov, D. G. Koptyukh


Abstract: Let $\Theta$ be a full modular lattice of the formation of finite groups and let $0_\Theta$ be zero of $\Theta$. We say that a $\Theta$-formation $\mathfrak F\ne 0_\Theta$ has the $\Theta$-length $l_\Theta(\mathfrak F)$ equal to $n$ if there exist $\Theta$-formations
$$ \mathfrak F_0,\mathfrak F_1, \ldots,\mathfrak F_n $$
such that $\mathfrak F_n=\mathfrak F$, $\mathfrak F_0=0_\Theta$, and $\mathfrak F_{i-1}$ is a maximal $\Theta$-subformation of $\mathfrak F_i$, $i=1,\ldots,n$. In this paper, a complete description of the structure of composite formations of the $c$-length 3 is obtained.

UDC: 512.542

Received: 03.07.1998
Revised: 14.03.2000

DOI: 10.4213/dm277


 English version:
Discrete Mathematics and Applications, 2001, 11:2, 199–211

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024