RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2001 Volume 13, Issue 4, Pages 116–121 (Mi dm311)

On the number of metric functions of a Boolean cube

A. A. Voronenko


Abstract: We obtain the limit of the $2^n$th root (asymptotics of the logarithm) of the number of pseudo-Boolean functions of $n$ variables that map adjacent vertices of the Boolean cube into adjacent vertices of an arbitrary graph, is obtained. This result is extended to mappings of vertices of Cartesian products of arbitrary graphs.
This research was supported by the Russian Foundation for Basic Research, grants 00–01–00351 and 01–01–00266.

UDC: 519.716

Received: 04.07.2001

DOI: 10.4213/dm311


 English version:
Discrete Mathematics and Applications, 2001, 11:6, 643–648

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024