Abstract:
For an arbitrary face system $\Phi\subseteq 2^{[m]}$ of the power set of the set $[m]=\{1,\dots,m\}$,
we consider the vector descriptions $f(\Phi;m),h(\Phi;m)\in Q^{m+1}$ and the generating functions
$$
F_{\Phi;m}(y-1)=\sum_{l=0}^mf_l(\Phi;m)(y-1)^{m-l} =
H_{\Phi;m}(y)=\sum_{l=0}^mh_{l}(\Phi;m)y^{m-l},
$$
where $f_l(\Phi;m)=|\{A\in\Phi\colon |A|=l\}|$, $0\leq l\leq m$.
The corresponding valuations on the Boolean lattice
of all subsets of the power set $2^{[m]}$ are defined.
For a partition of a face system $\Phi\subseteq{2}^{[m]}$
into Boolean intervals such that the partition consists of
$p_{i,j}$ intervals $[A,B]$ with $|A|=j$ and $|B-A|=i$,
$$
h_l(\Phi;m)=(-1)^l\sum_{i=0}^{m-l}\sum_{j=0}^l (-1)^j p_{i,j}
\binom{m-i-j}{l-j}.
$$
For a pair of mutually dual face systems
$\Phi,\Phi^*\subseteq2^{[m]}$, where
$\Phi^*=\{[m]-A\colon A\in{2}^{[m]}, A\notin\Phi\}$,
$$
h_l(\Phi;m)+(-1)^l\sum_{j=l}^m
\binom jlh_j(\Phi^*;m)=0, \qquad 1\leq l\leq m.
$$