This article is cited in
3 papers
On the asymptotics of the logarithm of the number of threshold functions of $K$-valued logic
A. A. Irmatov,
Ž. D. Kovijanić
Abstract:
For the number
$P(K,n)$ of threshold
$n$-ary functions of
$K$-valued logic,
we obtain the lower bound
$$
P(K,n+1)\geq \frac{1}{2}\binom{K^{n}}{\lfloor n-4-
2n/\log_K n\rfloor} P(K,\lfloor 2n/\log_K n+4\rfloor).
$$
The key argument in our investigation is the generalization of a result
obtained by Odlyzko on the subspaces spanned by
$p$ randomly chosen
$(\pm1)$-vectors. Namely, we prove that, as
$n\to\infty$, for any
$$
p\leq n-(3+\log_{2Q}36)n/\log_{2Q}{n}
$$
if
$K=2Q$,
respectively, for any
$$
p\leq n-(3+\log_{2Q+1}36)n/\log_{2Q+1}{n}
$$
if
$K=2Q+1$,
the probability that
the linear span of
$p$ randomly chosen vectors
$$
v_{1},v_{2},\ldots,v_{p}\in (E_K')^n=\{\pm 1, \pm 3,\ldots ,\pm(2Q-1)\}^n,
$$
respectively, from
$E_K^n=\{0,\pm 1,\ldots,\pm Q\}^n$, contains at least one
vector from
$$
(E_K')^n \setminus \bigcup_{i=1}^p \langle v_i\rangle,
$$
respectively, from
$$
E_K^n \setminus \bigcup_{i=1}^p \langle v_i\rangle,
$$
equals, for even
$K=2Q$,
$Q\ne 1$,
$$
4\binom p3\biggl(\frac{2}{3}+ \frac{1}{12Q^2}\biggr)^n +
O\biggl(p^{3}\biggl(\frac{2}{3}+\frac{Q-3}{12Q^3}\biggr)^{n}\biggr),
$$
and for
$Q=1$,
$$
4\binom p3\biggl(\frac{3}{4}\biggr)^n+
O\biggl(p^4 \biggl(\frac{5}{8}\biggr)^n\biggr),
$$
and, respectively, for odd
$K=2Q+1$,
$Q\ne 1$,
$$
2\binom p2\biggl(\frac{3}{4}+\frac{1}{4(2Q+1)^2}\biggr)^n+
O\biggl(p^2 \biggl(\frac{3}{4}-\frac{7}{4(2Q+1)^2}\biggr)^n\biggr),
$$
and for
$Q=1$,
$$
2\binom p2\biggl(\frac{7}{9}\biggr)^n+
O\biggl(p^3 \biggl(\frac{17}{27}\biggr)^n\biggr).
$$
The research of the first author was supported by the Ministry of Science
of the Russian Federation, project ‘Prospective Information Technologies’ №0201{.}05{.}028.
UDC:
519.7 Received: 22.06.1998
DOI:
10.4213/dm433