RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1997 Volume 9, Issue 2, Pages 131–138 (Mi dm466)

A conditional limit theorem with a random number of summands

S. G. Gushchin


Abstract: For a sequence of independent identically distributed random vectors with integer-valued non-negative components $(\xi_1^{(i)},\ldots,\xi_s^{(i)},\eta_i)$, $i=1,2,\dots$, we prove a limit theorem for the joint distribution of the sums
$$ \sum_{i=1}^m \xi_j^{(i)}, \qquad j=1,\dots,s, $$
for $n\to\infty$ and the random $m$ determined by the condition
$$ \sum_{i=1}^m \eta_i = n. $$


UDC: 519.2

Received: 20.02.1995

DOI: 10.4213/dm466


 English version:
Discrete Mathematics and Applications, 1997, 7:3, 305–312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024