RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1997 Volume 9, Issue 3, Pages 153–160 (Mi dm483)

This article is cited in 2 papers

Pareto-optimality conditions in discrete vector optimization problems

V. A. Emelichev, O. A. Yanushkevich


Abstract: For the vector optimization problem
\begin{gather*} F = (f_1, f_2,\dots, f_n)\colon X\to\mathbf R^n,\qquad n\ge 2, \\ f_i(x)\to \min_X\qquad \forall\,i\in N_n=\{1, 2,\dots,n\}, \end{gather*}
with a finite set of vector estimators $F(X)$ we give a wide class of efficiency (Pareto-optimality) criteria in terms of linear convolutions of transformed partial criteria. In particular, it is proved that an element $x^o\in X$ is efficient if and only if there exists a vector $(\lambda_1,\lambda_2,\dots,\lambda_n)$, $\lambda_i>0$, $i\in N_n$, such that
$$ \sum_{i\in N_n}\lambda_i\alpha^{f_i(x^o)} \le\sum_{i \in N_n}\lambda_i\alpha^{f_i(x)}\qquad \forall\,x \in X, $$
where $\alpha=n^{1/\Delta}$, $\Delta=\min\{f_i(x)-f_i(x') >0\colon x, x' \in X,\ i \in N_n\}$.
This research was supported by the Foundation for Basic Research of Republic Byelarus (grants F95–70 and MP96–35), and the DAAD and the International Soros Educational Program in Exact Sciences (grant ‘Soros Professor’ for the first of the authors).

UDC: 519.6

Received: 23.09.1996

DOI: 10.4213/dm483


 English version:
Discrete Mathematics and Applications, 1997, 7:4, 345–352

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025