RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1995 Volume 7, Issue 4, Pages 51–59 (Mi dm601)

This article is cited in 1 paper

On checking tests for a parity counter

V. G. Khakhulin


Abstract: We consider the circuits of functional elements realizing the Boolean function
$$ f^{\oplus }_{n}(\tilde{x})=x_{1}\oplus x_{2}\oplus \ldots \oplus x_{n} $$
under arbitrary constant failures on the inputs of elements. It is proved that for such circuits the length of the complete checking test is no less than $n+1$. It is shown that there exists a circuit realizing $f^{\oplus }_{n}(\tilde{x})$ with the complete checking test of length $n+2$.

UDC: 519.95

Received: 29.06.1993


 English version:
Discrete Mathematics and Applications, 1995, 5:6, 603–612

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024