RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1993 Volume 5, Issue 3, Pages 102–104 (Mi dm695)

This article is cited in 2 papers

Decomposition of Boolean functions into the sum of products of subfunctions

S. F. Vinokurov, N. A. Peryazev


Abstract: We obtain a theorem on the representation of Boolean functions in the polynomial form
$$ f(x,y)=\sum_\sigma\sum_\tau\alpha_{\tau\sigma}f(\tau,y)f(x,\sigma), $$
where the Boolean summations are taken over all Boolean vectors $\sigma$ and $\tau$, $\alpha_{\tau\sigma}\in\{0,1\}$, $x$ and $y$ are collections of Boolean variables. We also give a method for finding the coefficients $\alpha_{\tau\sigma}$.

UDC: 519.716

Received: 10.02.1992


 English version:
Discrete Mathematics and Applications, 1993, 3:5, 531–533

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024