RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2006 Volume 18, Issue 4, Pages 56–72 (Mi dm80)

This article is cited in 10 papers

An application of the method of additive chains to inversion in finite fields

S. B. Gashkov, I. S. Sergeev


Abstract: We obtain estimates of complexity and depth of Boolean inverter circuits in normal and polynomial bases of finite fields. In particular, we show that it is possible to construct a Boolean inverter circuit in the normal basis of the field $\mathit{GF}(2^n)$ whose complexity is at most $(\lambda(n-1)+(1+o(1))\lambda(n)/\lambda(\lambda(n)))M(n)$ and the depth is at most $(\lambda(n-1)+2)D(n)$, where $M(n)$, $D(n)$ are the complexity and the depth, respectively, of the circuits for multiplication in this basis and $\lambda(n)=\lfloor\log_2n\rfloor$.

UDC: 519.7

Received: 20.03.2006

DOI: 10.4213/dm80


 English version:
Discrete Mathematics and Applications, 2006, 16:6, 601–618

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025